The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments

نویسندگان

  • David Emerson
  • Eric Roden
  • Benjamin S. Twining
چکیده

Were Oscar Wilde a devotee of iron biogeochemistry in the twenty-first century (hard as that might be to imagine), he might remark that iron is the most ironic of elements. Those interested in microbes that carry out life-sustaining iron-coupled redox reactions like to point out that iron is, after oxygen, the most abundant redox-active element in the Earth’s crust. However, those studying oceanic phytoplankton regard iron as a nutrient that occurs at such vanishingly low concentrations in the surface ocean that it limits the growth of algae in more than 40% of the global ocean. This is because at the pH of seawater oxygen promotes the rapid oxidation of soluble ferrous iron to insoluble ferric iron oxyhydroxides that precipitate and sink out of the water column. As a result, while many marine microbes, and especially the photosynthetic ones, have developed finely-tuned mechanisms for acquiring iron, total primary productivity can be limited by iron. At oceanic hydrothermal vents, and in terrestrial habitats, iron is not a limiting nutrient. At many oxic-anoxic interfacial habitats, not only is iron not limiting, but it is so abundant that lithotrophic microbes can use it as an electron source to sustain growth, and form robust communities of iron-oxidizing chemolithoautotrophs. In more acidic conditions, such as certain hot springs and acid mine drainage systems, ferrous iron is more stable, concentrations can be in the millmolar range, and specific communities of archaea and bacteria that use iron as an energy source can flourish. Iron-oxidizing microbes are not limited to aerobic habitats, but can also oxidize iron under anaerobic conditions by coupling the oxidation to either anoxygenic photosynthesis or nitrate reduction. Nor does it appear that they are limited to only utilizing soluble ferrous iron as an energy source, but can also acquire iron from insoluble minerals that contain reduced iron. But iron-oxidation is only one-half of the equation. The utilization of ferric iron, principally in the form of Fe-oxides, to carry out anaerobic respiration is well established as an important pathway for organic carbon metabolism in anaerobic habitats. Furthermore, model organisms such as Shewanella and Geobacter are utilized to study the biochemical mechanisms of Fe-reduction, and from this we have learned a good deal about processes involved in extracellular electron transfer. Taken as a whole, it is apparent that the iron cycle is a remarkably complex process, dependent upon a wide range of chemical interactions, habitat types and groups of microbes that link it to all of Earth’s other important biogeochemical cycles. In this special topic issue we have gathered contributions from scientists working in diverse disciplines who have common interests in iron cycling at the process level and at the organismal level, from the perspective of iron as an energy source or as a limiting nutrient for primary productivity in the ocean. The hope is that bringing together seemingly disparate lines of research under one cover will result in a more global understanding of the iron cycle, and perhaps draw new insight into the connections within the cycle. We were very fortunate to enlist a varied and talented group of authors to contribute a wide range of articles. In total, 16 papers have been included, with a mixture of 9 original research articles, 6 reviews, and 1 perspective. Aspects of iron cycling in the open ocean are covered by reviews on organic complexation (Gledhill and Buck, 2012) and on the role of superoxide dismutase (Rose, 2012), as well as in a research article on the role of weak iron-binding ligands in the ocean by Croot and Heller (2012). Oxygen-dependent iron oxidation at circumneutral pH is addressed in a research paper on a potential mechanism for iron oxidation by Liu et al. (2012), a research paper on mineralogy of biogenicallyformed oxides at a hydrothermal vent (Toner et al., 2012), and a review of iron-based ecosystems associated with hydrothermal vents and the subsurface in the Pacific by Kato et al. (2012). Iron-cycling in acidic systems is reviewed by Johnson et al. (2012), and original research on a unique iron-rich acidic ecosystem in Yellowstone National Park is presented by Kozubal et al. (2012). A novel spectroscopic technique for biochemical analysis of iron oxidation in Leptospirillum ferroxidans is contributed by Blake and Griff (2012). Microbial utilization of iron under anaerobic conditions is dealt with in a review of mechanisms for iron reduction by Shi et al. (2012). Picardal (2012) reviews abiotic and microbial interactions of anaerobic iron oxidation and Carlson et al. (2012) provide an interesting perspective piece on nitrate-dependent iron oxidation. Original research on iron reduction in Shewanella is presented by Coursolle and Gralnick (2012), and competition among phototrophic and nitrate-dependent iron-oxidizing microbes is

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial iron metabolism in natural environments

The aim of this project was to assess the diversity of iron metabolizing bacteria in several ecological niches by culture-dependent and culture-independent methods. In particular, we wanted to determine whether non-phototrophic, anaerobic nitrate-dependent Fe(II)-oxidizers coexist with aerobic Fe(1I)-oxidizers and facultatively anaerobic Fe(III)-reducers in natural habitats. To this end, we sam...

متن کامل

Diversity of Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria and their Involvement in Oxygen-Independent Iron Cycling

In previous studies, three different strains (BrG1, BrG2, and BrG3) of ferrous iron-oxidizing, nitrate-reducing bacteria were obtained from freshwater sediments. All three strains were facultative anaerobes and utilized a variety of organic substrates and molecular hydrogen with nitrate as electron acceptor. In this study, analyses of 16S rDNA sequences showed that strain BrG1 was affiliated wi...

متن کامل

Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions

Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, ter...

متن کامل

Microbial iron-redox cycling in subsurface environments.

In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic couple...

متن کامل

Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012